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Abstract. We consider, in the frame of the long-wavelength Heisenberg model, the effect of a pinning field
on the spin wave band gaps and transmission spectra of one-dimensional comb-like structures. Using a
Green’s function method, we obtained closed-form expressions for the band structure and the transmission
coefficients for an arbitrary value of the number N of sites (N ′of resonators) in the comb-like structure. We
report the opening-up of stop bands inside the pass-bands due to the effect of the pinning field at the ends
of the resonators of the comb. These structures, composed of one-dimensional ferromagnetic materials, may
exhibit large gaps where the propagation of spin waves is forbidden. The width and frequency position of
these gaps depends on the strength of the pinning field.

PACS. 75.30.Gw Magnetic anisotropy – 75.30.Ds Spin waves – 75.75.+a Magnetic properties
of nanostructures

1 Introduction

In recent years, a great deal of interest has been devoted
to the investigation of low-dimensional magnetic struc-
tures [1–3]. This related both to the fundamental inter-
est and to the potential applications of spintronic devices,
and is supported by the advanced progress in nanofab-
rication technology [4]. For example, arrays of very long
ferromagnetic nanowires of Ni, permalloy and Co, with
diameters in the range of 30 to 500 nm have been cre-
ated [5,6]. These are very uniform in cross section, with
lengths in the range of 20 microns. They thus are real-
izations of nanowires one can reasonably view as infinite
in length, to excellent approximation. Besides the static
and magneto-transport properties of magnetic nanowire
arrays, the dynamic properties of magnetic nanostruc-
ture are also of considerable interest in both fundamen-
tal as well as applied research [6]. The static properties
of micron-size magnetic dots and wires have been stud-
ied to some extent [7–10], while their high-frequency dy-
namic properties have been rarely investigated [11,12].
The study of spin waves is a powerful method for probing
the dynamic properties of magnetic media in general and
those of laterally patterned magnetic structures in partic-
ular [13]. On the other hand, due to the possible use of
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electron spin for storage and information transfer in quan-
tum computers [14], there have been many recent studies
on spin transport in semiconductor nanostructures [15]. In
the last decade, several studies have addressed the prob-
lem of spin wave band structures in magnetic superlat-
tices [16–19] and two-dimensional (2D) magnetic periodic
structures [20]. Most of these studies focus on the exis-
tence of stop bands in the spin wave spectra of magnetic
structures. These recent developments encouraged us to
investigate magnetic excitations in networks composed of
one dimensional (1D) continuous magnetic media. Our
choice of 1D magnetic structures is motivated by possi-
ble engineer spin-injection devices that render feasible the
control of the widths of the pass-bands (and hence the
stop bands).

In previous publication, we proposed [21] a model of
1D structure exhibiting pass bands separated by large stop
bands. The geometry of the model (Fig. 1a) (called a
comb-like structure CLS) is composed of an infinite 1D
monomode waveguide (the backbone, medium 1) along
which N ′ side branches of length d2 (medium 2) are
grafted at N equidistant sites separated by a length d1,
N and N ′ being integers. The presence of defect branches
in the comb structure can give rise to localized states
within the gaps. It has been shown that these states
are very sensitive to the length and number of the side
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Fig. 1. (a) Schematic of the comblike waveguide investigated
in the present work. The material media are designated by
an index i, with i equal 1 for the backbone (heavy line) and
2 for the side branches. There are N ′(= 1) side branches of
length d2 grafted at equidistant sites separated by a length d1.
(b) Waveguide with N ′(= 1) side branches of length d2 grafted
at a finite number N of equidistant sites separated by a length
d1 and connected at its extremities to two semi-infinite leading
lines.

branches, to the periodicity of the system, and to the
length of the defect branches.

Let us direct attention to the point that the quantum
size effect (or the sub-band structure) was neglected in the
CLS networked waveguide. We dealt with a magnetic net-
work where the cross-sections of all wires are considered
to be much smaller than the considered wavelength, i.e. a
continuum approximation theory was employed in the cal-
culation. Such an approximation is valid provided that the
relevant wavelengths are large compared with the lattice
spacing, i.e. we dealt only with long-wavelength excita-
tions. Therefore, in using the Heisenberg model of a fer-
romagnet we are neglecting the dipole-dipole interactions
compared with the exchange contribution to the Hamilto-
nian [21,22]. This macroscopic approach is analogous to
that used by Cottam [23] in magnetostatic calculations.
Let us mention also that the continuum theory has the
advantages that explicit analytic expressions of different
magnetic properties (e.g. dispersion curves, transmission
coefficients) can be calculated.

The purpose of the present note is to explore the effect
of the pinning field [22] (acting at the end of the resonators
of the CLS) on the spin waves band gaps and transmission
spectra of a simple Heisenberg ferromagnet. We focus our
attention on the effect of the pinning field because they
can vary over a wide range of values, depending on the
nature of the ends of the resonators and the properties
of the magnetic bearing ions. If one has a perfect semi-
infinite ferromagnetic medium (wire), in which the surface
layer (end) has the same atomic structure and lattice con-
stant as a similar crystallographic plane in the interior of
the medium, then the crystal field at a site in the surface
layer will have a lower symmetry than the crystal field at
an interior site. This fact, combined with the presence of
spin-orbit coupling can give rise to pinning fields in the
surface layer [24]. While one might expect this contribu-
tion to the pinning field to be small if the magnetic ion is

an S-state, if orbital degeneracy is present, one may ex-
pect rather strong surface pinning field to be generated
even in a crystallographically perfect surface.

It is clear, as mentioned above, that one can encounter
effective pinning field that vary in magnitude over a wide
range. Since a pinning field at the ends of the resonators
can strongly affect the spin motion near the boundary,
therefore the spin waves frequencies can be severely mod-
ified. We shall examine this effect for a wide range of pin-
ning field in this work. Such an effect may lead to new
features, in comparison with the CLS waveguides studied
in reference [21]. For example, the existence of larger gaps,
the avoidance of the constraint on the boundary condition
at the end of the side branches, appearance of quasi quan-
tized bands (at large pinning) without inserting a defect.
Theses new features (which could be of potential interest
in waveguide structures) are essentially due to the influ-
ence of the pinning field at the end of the resonators. We
report on results of calculated band structures and trans-
mission coefficients. We also show that the width of the
band gaps may be enlarged by increasing the strength of
the pinning field.

The Green’s function method (GFM) used in the cal-
culation in this paper derives a response function which
contains all the physical informations of the composite
system under study. This response function gives in par-
ticular directly the magnetization at any point of the sys-
tem as response to an unit input excitation introduced
at any other point. This method is equivalent to the
usual calculation of the eigenvalues and eigenvectors of
the composite system by in particular the transfer ma-
trix method [17,18]. Its advantages are in a more compact
treatment of the interface boundary conditions and in the
fact that this response function enables direct calculations
of all the physical properties, in particular of those con-
nected with defects and scattering problems [22]. These
Green’s functions enable us to obtain analytic expressions
for the dispersion relation as well as the reflection and
transmission coefficients through the structure. The com-
plete response functions can also be used to derive all
eigenvectors [25] in the finite networks.

This study is organized as follows. In Section 2, we deal
with infinite and finite CLS. First we use the semi-classical
torque equation for the magnetization and the GFM to
write down the magnetic GF for an infinite Heisenberg
ferromagnetic medium. We then calculate the dispersion
relation for CLS and the transmission coefficient. In Sec-
tion 3, we illustrate these analytical results by numerical
examples with emphasis on the effect of the pinning field
on the band gap and the transmission spectrum of the net-
works. Finally, some conclusions are drawn in Section 4.

2 Theoretical model

2.1 Green’s function for an infinite medium

Here we investigate the calculation of the magnetic
GF’s for an infinite ferromagnetic medium. In using the
Heisenberg model of a ferromagnet we are neglecting the
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effects of dipole-dipole interactions compared with the ex-
change contribution to the Hamiltonian. Therefore in eval-
uating the needed Green’s function, it is convenient to
use a continuum approximation. Such an approximation
is valid provided that the relevant wavelengths are large
compared with the lattice spacing. Therefore, we will deal
only with long-wavelength excitations.

A medium denoted “i” and described in the Cartesian
coordinate system (O, x1, x2, x3) is assumed to have a
simple cubic structure with lattice parameter a. We take
the static applied field H0 and the spontaneous magne-
tization M0 to be in the x1 direction. The equation of
motion for the total magnetization M can be expressed in
terms of total effective magnetic field H as

dM
dt

= γ(M × H) − Γ (M − M0i1), (1)

where γ is the gyromagnetic ratio and Γ is a phenomeno-
logical damping factor (considered to be positive con-
stant). The fields M and H are given by

M = M0i1 + m(r, t), (2)

and
H = H0i1 + hext(r, t) − Hexte

j(k·r−ωt). (3)
It is understood that i1 is a unit vector parallel to the

static fields M0 and H0 in the x1 direction and m(r, t)
represents the instantaneous deviation from its average
value M0i1. The term proportional to Hext in equation (3)
represents an externally applied driving field of wave vec-
tor k and frequency ω. Finally the term hext(r, t) in equa-
tion (3) is an effective field arising from the exchange in-
teractions between neighboring magnetic moments. This
exchange field hext(r, t) may be written as [27]

hext(r, t) =
2

(γ�)2
∑

δ

Jr,r+δM(r + δ, t), (4)

where Jr,r+δ is the exchange interaction between mag-
netic sites at r and r + δ. In this paper we assume that
Jr,r+δ couples only nearest neighbors in the simple cu-
bic lattice. On expanding M(r + δ, t) in terms of M(r, t)
and its derivatives using Taylor series, taking into account
that for each site r there are six neighbors coupled by the
exchange J , we obtain to the lowest order that,

hext(r, t) =
2

(γ�)2
[6 + a2∇2]M(r, t). (5)

Note that in doing the above expansion we use a
continuum representation of the ferromagnet, as was
mentioned before, and thus we are restricting ourselves
to the long wavelength excitations. Inserting equa-
tions (2, 3) and (5) into the torque equation (1), and
making the usual linear spin-wave approximation (i.e., ne-
glecting small terms which are of the second order in m,
since |m| � M0 at low temperature) we arrive at the
following equation of motion for m,

dm
dt

+ Γm =

i1 ×
[
γM0Hexte

j(k·r−ωt) − (γH0 − D′∇2
)
m
]
, (6)

where D′ = 2Ja2M0/γ�
2. From the property of transla-

tional invariance of the medium and on assuming a time
dependence in the form exp[−jωt], we may write:

m(r, t) = m(x3)ej(k‖·x‖−ωt), (7)

where k‖ ≡ (k1, k2) and x‖ ≡ (x1, x2) are two dimensional
wave vectors. If we now substitute equation (7) into equa-
tions (6), after some algebraic manipulations we arrive at
the following differential equation for m+(x3),

D′

γM0

[
∂2

∂x2
3

− k2
|| +

ω + jΓ − γH0

D′

]
m+(x3) =

− (Hx3
ext + jHx2

ext)e
jk3x3 , (8)

where m+(x3) = m3(x3) + jm2(x3) and m1(x3) =
0. k3 is the x3 component of the propagation vector
k = (k||, k3). Using equation (8), the Fourier-transformed
Green’s function between two points (sites) r(x1, x2, x3)
and r′(x′

1, x
′
2, x

′
3) of the considered infinite ferromagnetic

medium “i” associated with the magnetization m+(x3)
satisfies the following equation

Fi

αi(ω)

[
∂2

∂x3
2
− α2

i (ω)
]

Gi(k‖, x3, x
′
3) = δ(x3 − x′

3) (9)

and can be expressed as

Gi(x3, x
′
3) = −e−αi(ω)|x3−x′

3|

2Fi
(10)

where

Fi =
D′

iαi(ω)
γiMi

, (11)

with

αi(ω) =

√
k2
‖ −

(ω − γiH0)
D′

i

. (12)

Let us note that in equation (12) and in what follows
the damping constant Γ is considered to be zero. The
Green’s function for a one-dimensional infinite wave-guide
is obtained by setting k‖ = 0 in equation (12), i.e.,

αi(ω) = j

√
(ω − γiH0)

D′
i

. (13)

2.2 Interface response theory

We briefly recall the building principle of the Green func-
tion of the infinite CLS. This will enable us to present
the dispersion relations and the transmitted waves with-
out going into too much detail. Our calculation is based
on the theory of interface response in composite mate-
rials [25] in which the Green function g of a composite
system is given as

g(DD) = G(DD) − G(DM)G−1(MM)G(MD)

+ G(DM)G−1(MM)g(MM)G−1(MM)G(MD) (14)
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where D and M are the whole space and the space of
the interfaces in the composite materials, respectively.
G(DD) is the Green’s function of a reference continuous
medium and g(MM), the interface elements of the Green’s
function of the composite system. The inverse g−1(MM)
of g(MM) is obtained for any point within the space of
the interface M = {⋃Mi} as a superposition of the differ-
ent g−1

i (Mi, Mi) [25], the inverses of gi(Mi, Mi) for each
constituent i of the composite system.

The interface states can be calculated from [25]

det[g−1(MM)] = 0 (15)

showing that, if one is interested in calculating the inter-
face states of a composite, one only needs to know the
inverse of the Green’s function of each individual block in
the space of their respective surfaces and/or interfaces.

Moreover if U(D) [26] represents an eigenvector of the
reference system, equation (14) enables the calculation of
the eigenvectors u(D) of the composite material

u(D) = U(D) − U(M)G−1(MM)G(MD)

+ U(M)G−1(MM)g(MM)G−1(MM)G(MD). (16)

In equation (16), U(D), U(M) and u(D) are row-
vectors. Equation (16) provides a description of all the
waves reflected and transmitted by the interfaces, as well
as the reflection and the transmission coefficients of the
composite system. In this case, U(D) must be replaced
by a bulk wave launched in one homogeneous piece of the
composite material [26].

2.3 Dispersion relations and transmission coefficients

Now, we turn to the calculation of spin waves band struc-
tures and transmission coefficients for comblike structures
using the GFM developed by Dobrzynski [25]. The 1D infi-
nite CLS waveguide can be modelled (see Fig. 1a) as an in-
finite 1D monomode waveguide (the backbone-medium 1,
in the direction x3) along which N ′ side branches of
length d2 (medium 2) are grafted at N equidistant sites
separated by a length d1, N and N ′ being integers. The pe-
riod of the CLS is d1. The interface domain is constituted
of all the connection points between the side branches
and the backbone. A position (site) along the x3 axis in
medium 1 is indicated by n, where n is an integer such that
−∞ < n < +∞. Here and afterwards the cross-sections
of all wires are considered to be much smaller than the
considered wavelength, so as to neglect the quantum size
effect (or the sub-band structure). Due to the translational
periodicity of the system in the direction x3 one can define
a wave vector k3 along the axis of the waveguide associ-
ated with the period d1. With these ingredients, one can
derive analytically the dispersion relation of the CLS, as
well as the transmission coefficient through a waveguide
containing a finite number of sites.

2.3.1 One dimensional infinite comblike structures

The CLS is obtained by coupling together the finite seg-
ments of length d1 that constitute the backbone and the
finite segments of length d2 composing the side branches.
Thus, in the first step, we need to know the surface ele-
ments of the Green’s function for each finite wire.

For a wire involved in the backbone, both surfaces
located at x3 = −d1/2 and x3 = d1/2 are free. It
is known [25] that for such a case the inverse of the
(2 × 2) matrix g1(M1M1), within the interface space
M1 ≡ {−d1/2, +d1/2} takes the following form:

[g1(M1M1)]−1 =

(
A1 B1

B1 A1

)

=

(
g−1
1 (−d1/2,−d1/2) g−1

1 (−d1/2, d1/2)

g−1
1 (d1/2,−d1/2) g−1

1 (d1/2, d1/2)

)
, (17)

where

A1 = −F1C1

S1
, (18)

B1 =
F1

S1
, (19)

with

C1 = cosh[α1(ω)d1], (20)
S1 = sinh[α1(ω)d1]. (21)

For a segment constituting a side branch (medium 2),
the boundary condition at one extremity of the wire is
dependent upon the pinning field HA that gives rise to a
local perturbation VA in the Hamiltonian such that [22]
VA = −aHA/M2. With HA = 0, ones recovers the case of
a free surface. Thus, g−1

2 (M2M2) becomes

[g2(M2M2)]−1 =

(
A2 B2

B2 A2 + VA

)
, (22)

where A2 and B2 have similar expressions to A1 and B1

with the index 1 replaced by 2.
Within the total interface space of the infinite CLS,

the inverse of the matrix giving all the interface elements
of the Green’s function g is an infinite tridiagonal ma-
trix [g∞(MM)]−1 [25] formed by linear superposition of
the elements [gi(MM)]−1. To find this matrix one has to
take into account the respective contributions of media 1
and 2 in the interface domain constituted of all the sites
(n, i,±d1/2). To find the contribution of medium 1 to the
diagonal elements of the matrix [g∞(MM)]−1 one has to
take the element g−1

1 (−d1/2,−d1/2)[= g−1
1 (d1/2, d1/2)] of

equation (17) and multiply it by 2 (because at each site
we have two pasted segments belonging to medium 1).
The contribution of medium 2 to the diagonal elements
is obtained by calculating the inverse of the matrix given
by equation (22), taking the element g2(−d2/2,−d2/2)[=
g2(−d2/2,−d2/2)], finding its reciprocal and multiplying
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it by N ′. Therefore, the matrix [g∞(MM)]−1 takes the
form:

[g∞(MM)]−1 =


2A1 + W B1 0 0
B1 2A1 + W B1 0
0 B1 2A1 + W B1

0 0 B1 2A1 + W


 , (23)

where

W =
N ′[VAA2 + F 2

2 ]
(VA + A2)

. (24)

Taking advantage of the translational periodicity of
the system in the direction x3, the above matrix can be
Fourier transformed as

[g∞(k , MM)]−1 = 2A1 + W + 2B1 cos(kd1) (25)

where k is the modulus of the 1D reciprocal vector k . In
the k space, the Green’s function of the infinite CLS is
obtained by inverting the above equation, i.e.,

[g∞(k , MM)] =
1

2A1 + W + 2B1 cos(kd1)
. (26)

The dispersion relation of the CLS wave-guide is given
by equation (15). A simple algebra leads to the form
cos(kd1) = η(ω) where

η(ω) = C1 +
N ′S1F2

2F1

{
F2S2 − C2VA

F2C2 − S2VA

}
. (27)

The above equation for the dispersion relation (after
inserting the value of VA and F2 inside the bracket) takes
the form:

η(ω) = C1 +
N ′S1F2

2F1

{
α2(ω)aS2 + C2ε

α2(ω)aC2 + S2ε

}
, (28)

where ε = γHAa2/D′
i is the dimensionless parameter

which measures the strength of the pinning field HA rel-
ative to the exchange interaction J . If ε = 0 we re-
cover the results of reference [21]. It is straightforward to
Fourier analyze back into real space the Green’s function
g∞(k , MM) and obtain:

g∞(n, n′) =
(

S1

F1

)
t|n−n′|+1

t2 − 1
, (29)

where the integers n and n′ refer to the sites (−∞ <
n, n′ < +∞) on the infinite waveguide and the parameter
t is given by :

t = ejkd1 . (30)

2.3.2 Transmission coefficient of the finite comblike
structures

Finite comb structures are physically realizable rather
than infinite ones. Therefore, in this section, we inves-
tigate the transmission spectrum of a finite comb. This

structure is constructed as follows: a finite piece contain-
ing N equidistant side-branches is cut out of the infinite
periodic system illustrated in Figure 1a, and this piece
is subsequently connected at its extremities to two semi-
infinite leading lines. The finite CLS is therefore composed
of N ′ side-branches (medium 2, of length d2) pasted pe-
riodically with a finite segment (medium 1) of length d1

at N sites on a finite line. We calculate analytically the
transmission coefficient of a bulk spin-wave coming from
x3 = −∞.

The system of Figure 1b is built of the infinite CLS il-
lustrated in Figure 1a. In a first step, one suppresses the
segment linking sites 0 and 1 as well as the segment link-
ing sites N and N + 1. For this new system composed
of a finite comb and two semi-infinite leads, the inverse
Green’s function at the interface space, [gt(MM)]−1, is
an infinite banded matrix defined in the interface domain
of all sites n, −∞ < n < +∞. This matrix is similar
to the one associated with the infinite CLS. Only a few
matrix elements differ, namely, those associated with the
sites n = 0, n = 1, n = N , and n = N + 1.

The cleavage operator Vcl(MM) = [gt(MM)]−1−
[g∞(MM)]−1 [25], is the following 4 × 4 square matrix
defined in the interface domain which is constituted of
sites n = 0, n = 1, n = N , and n = N + 1

Vcl(MM) =



−A1 −B1 0 0
−B1 −A1 0 0

0 0 −A1 −B1

0 0 −B1 −A1


 . (31)

In a second step, two semi-infinite leads (constituted
of the same material) are connected to the extremities
n = 1 and n = N of the finite CLS. With the help of the
GFM [25], the perturbing operator Vp(MM)(allowing the
construction of the system of Figure 1b from the infinite
comb) is defined as the 4 × 4 square matrix [21]

Vp(MM) =



−A1 −B1 0 0
−B1 −A1 − F1 0 0

0 0 −A1 − F1 −B1

0 0 −B1 −A1


 , (32)

where F1 is the inverse surface Green’s function of
the semi-infinite lead. Using equations (29, 32), one
obtains the matrix operator �(MM) = I(MM) +
Vp(MM)g(MM) in the space M of sites n, n′ =
0, 1, N, N +1. For the calculation of the transmission coef-
ficient, we need only the matrix elements �(1, 1), �(1, N),
�(N, 1), and �(N, N), which can be set in the form of the
2 × 2 matrix �s(MM):

�s(MM) =

(
1 + Qt QtN

QtN 1 + Qt

)
(33)

where
Q =

t − C1 + S1

t2 − 1
. (34)
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The surface Green’s function ds(MM) of the finite CLS
in the space of sites 1 and N is given by:

ds(MM) = gs(MM)[�s(MM)]−1 (35)

where

gs(MM) =
tS1

F1(t2 − 1)

(
1 tN−1

tN−1 1

)
(36)

is the matrix constituted of elements of g(MM) associ-
ated with sites 1, and N . We now calculate the trans-
mission coefficient with a bulk spin-wave coming from,
x3 = −∞, U(x3) = e−α1(ω)x3 . Substituting this incident
wave in equation (16) and considering equations (10, 35),
the transmission coefficient takes the form

T =

∣∣∣∣∣ 2S1(t2 − 1)tN

(t(C1 − S1) − 1)2 − t2N (C1 − S1 − t)2

∣∣∣∣∣
2

. (37)

3 Numerical results and discussion

We now illustrate the above analytical results by a few nu-
merical calculations for some specific examples. We report
the results of dispersion relations and transmission factors
in the 1D CLS. For the sake of simplicity, we have limited
ourselves to the case where identical media (F1 = F2)
constitute the CLS.

Figure 2 displays the projected band structure of an
infinite CLS (Eq. (28)) for given values of d1, d2, a, ε and
D such that d1 = d2 = 1500 Å, a = 4 Å, −0.025 ≤ ε ≤
0.025 and D = 1.4×10−6 Hz respectively [22]. The plot is
given as the frequency ω − Ω0,(Ω0 = γH0), (GHz) versus
the dimensionless parameter ε. The shaded areas, corre-
sponding to frequencies for which |η| < 1, represent bulk
bands where spin waves are allowed to propagate in the
structure. These areas are separated by minigaps where
the wave propagation is prohibited. In Figure 2, one can
distinguish between two types of minigaps: the gaps cre-
ated inside the pass-bands due to the existence (strength)
of the pinning field, and the gaps, occurring for any value
of ε, that are related to the periodicity of the structure and
the resonance states of the grafted branches (which play
the role of resonators). Two interesting points appear (in
the band structure of Fig. 2) with increasing (decreasing)
ε : first, shifting the position of the gaps to a higher (lower)
frequencies, second, widening the gaps which created in-
side the pass-bands due to the existence of the pinning
field. Moreover in the negative range of ε and ω − Ω0,
there appears a narrow band. This band correspond to
the localized surface states at the ends of the resonators.
The increase (decrease) in the length d2 of the resonators,
makes this band more narrow (wide). This is due to the
weak (strong) interaction between these localized states
via the backbone (i.e., the more the end of the resonator
is far from the backbone, the more the surface states are
localized). This also more visible in the negative range of
Figure 3 where the length of d2 is shorter than the one
given in Figure 2, namely d1 = 1500 Å and d2 = 600 Å,

Fig. 2. Projected band structure of the CLS as function of ε.
The shaded areas represent the bulk bands. The gaps created
inside the bulk band is related to the strength of the pinning
field. With increasing (decreasing) ε all gaps are shifted up
(down) to a higher (lower) frequencies. The parameters are
d1 = d2 = 1500 Å, a = 4 Å, −0.025 ≤ ε ≤ 0.025, D =
1.4 × 10−6 Hz, N ′ = 1, and N → ∞. The two media are
identical.

Fig. 3. The same as in Figure 2 but for d1 = 1500 Å and
d2 = 0.4d1.

the other parameters being the same as in Figure 2. Let
us mention that it is necessary for the existence of the
surface (ends) spin waves that ε < 0, i.e. the pinning field
HA is antiparallel to the magnetization direction [22].

As a transparent example we plot in Figure 4 the first
five dispersion curves in the band structure of the infinite
CLS for two cases, ε = 0 (solid curve) and ε = −0.01
(dashed curve). The plot is given as ω −Ω0 (GHz) versus
kd1, the other parameters being the same as in Figure 2.
The first band for the case ε = 0 disappears with the other
choice of ε. A new flat band (which correspond to localized
surface states at the ends of the resonators) appear at
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Fig. 4. The first five dispersion curves in the spin waves band
structure of the infinite CLS for two cases, ε = 0 (dotted curve)
and ε = 0.01 (heavy curve). The plot is given as ω−Ω0 (GHz)
versus kd1. The other parameters being the same as in Fig-
ure 2a.

ω −Ω0 � −0.8 GHz. In the band structure corresponding
to ε = 0, the degenerate points between the second and
the third bands (which appear at kd1 = π and −π), and
between the fourth and the fifth bands (which appear at
kd1 = 0), is removed and a new gaps is created in the
band structure corresponding to ε = −0.01. The width,
as well as the frequency position, of these gaps depends
on the strength of the pinning field.

We now turn to the study of the transmission power
through the CLS network (Eq. (37)). We start with a
study of a simple example, namely a wave guide consist-
ing of a unique resonator. The variations of T versus fre-
quency, ω −Ω0, are reported in Figure 5a for ε = 0 (solid
curve) and ε = 0.02 (dashed curve), the other parame-
ters being as in Figure 2. The effect of the pinning field
is to shift the zeros of the transmission (which correspond
to the eigenmodes of the single resonator) to higher fre-
quencies. These zeros enlarge into gaps with increasing the
number of resonators.

The transmission rate through a finite-size of CLS con-
taining N = 10 resonators (i.e. N ′ = 1) with ε = 0, 0.015,
−0.005 is reported in Figures 5b, c and d respectively.
New gaps inside the transmission bands show up in these
figures. These new gaps are created, firstly, by removing
the degenerate points in the band structure (this occurs
at small value for ε), see Figure 2. With increasing ε com-
plete formed gaps are achieved. The position of the gaps
related to the periodicity of the structure, as well as the
new gaps, shift up to higher frequencies with increasing ε.
Despite the finite number of resonators in Figure 5, the
transmission approaches zero in regions corresponding to
the observed gaps in the spin waves band structure of
Figure 2. It is worth noticing that the general features
discussed in Figure 2 are still valid for any value of N and

  

 

 
 

 

Fig. 5. (a) Transmission factor versus frequency (GHz) for a
waveguide with one resonator in the case of ε = 0 (solid curve)
and ε = 0.02 (dashed curve). The other parameters being as
in Figure 2a. (b) Variations of the transmission power through
a CLS versus frequency (GHz) for N = 10, N ′ = 1 and ε = 0.
The other parameters being as in Figure 2a. Figures c, d is the
same as in (b) but for ε = 0.015,−0.005 respectively.

d1 = d2. However, the shape of the band structure changes
drastically for d1 �= d2, (see Fig. 3).

4 Conclusion

In this paper, we have considered the effect of a pinning
field on the spin waves band structure and transmission
spectra of 1D monomode CLS structures. A theoretical
investigation using Green’s function method is presented.
New gaps are created inside the pass-bands due to the
strength of the pinning field. Compared to the study pre-
sented in reference [21], the observed gaps can be made
larger with special choice of the pinning value. The ex-
istence of the gaps in the spectrum is attributed to the
periodicity, the zero transmission associated to a single
resonator, and the strength of the pinning field. Let us
mention that, by associating in tandem several ClS’s, one
could obtain an ultrawide gap where the transmission is
cancelled over a large range of frequencies. In such a struc-
ture, the huge gap results from the superposition of the
forbidden bands of the individual CLS. Since it is gener-
ally the case that magnetic periodic networks have wide
technical applications, it is anticipated that this new class
of materials, which can be referred to as “spin waves crys-
tals”, will turn out to be of significant value for prospective
applications.
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